Dioxinlike Properties of a Trichloroethylene Combustion-Generated Aerosol
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Conventional chemical analyses of incineration by-products identify compounds of known toxic-
ity but often fail to indicate the presence of other chemicals that may pose health risks. In a pre-
vious report, extracts from soot aerosols formed during incomplete combustion of trichloroethyl-
ene (TCE) and pyrolysis of plastics exhibited a dioxinlike response when subjected to a ker-
atinocyte assay. To verify this dioxinlike effect, the complete extract, its polar and nonpolar frac-
tions, some containing primarily halogenated aromatic hydrocarbons, were evaluated for toxicity
using an embryo assay, for antiestrogenicity using primary liver cell cultures, and for the ability
to transform the aryl hydrocarbon receptor into its DNA binding form using liver cytosol in a
gel retardation assay. Each of these assays detect dioxinlike effects. Medaka (Oryzias latipes)
embryos and primary liver cell cultures of rainbow trout (Oncorhynchus mykiss) were exposed to
concentrations of extract ranging from 0.05 to 45 pg/l. Cardiotoxicity with pericardial, yolk sac,
and adjacent peritoneal edema occurred after exposure of embryos to concentrations of 7 pg/l or
greater. These same exposure levels were associated with abnormal embryo development and, at
the higher concentrations, death. Some of the fractions were toxic but none was as toxic as the
whole extract. In liver cells, total cellular protein and cellular lactate dehydrogenase activity were
not altered by in vitro exposure to whole extract (0.05-25 pg/l). However, induction of
cytochrome P4501A1 protein and ethoxyresorufin O-deethylase activity occurred. In the pres-
ence of whole extract, estradiol-dependent vitellogenin synthesis was reduced. Of the fractions,
only fraction 1 (nonpolar) showed a similar trend, although vitellogenin synthesis inhibition was
not significant. The soot extract and fractions bound to the Ah receptor and showed a signifi-
cantly positive result in the gel retardation/DNA binding test. Chemical analyses using GC-MS
with detection limits for 2,3,7,8-tetrachlorodibenzo-p-dioxin and dibenzofuran in the picomole
range did not show presence of these compounds. Our results indicate that other chemicals asso-
ciated with TCE combustion and not originally targeted for analysis may also pose health risks
through dioxinlike mechanisms. Key words: Ah receptor, antiestrogen, complex mixture, dioxin-
like toxicity, dioxin-response element binding, embryo/cardiovascular toxicity, incomplete com-
bustion by-products, liver, trichloroethylene, vitellogenin. Environ Health Perspect 104:734—743
(1996)

Incineration has been widely used as a
means for disposal of municipal, hospital,
and industrial hazardous wastes. Its use has
been curtailed in recent years because of
concern about the emission of toxic by-
products associated with the soot particles,
especially chlorinated phenols, aromatic
hydrocarbons, polychlorinated dibenzodi-
oxins, and dibenzofurans (I-3). These
emissions arise from improper operation of
incinerators or from transients (4-6) in
operation during which inadequate temper-
ature and mixing conditions in the combus-
tion zone may lead to incomplete combus-
tion. These transient discharges, also known
as puffs, are characterized by large transient
emissions of soot and toxic volatile organic
hydrocarbons (4-7). Although they are rel-
atively rare during incinerator operation,
puffs contribute a major fraction of the
toxic compounds in incinerator effluent.
For example, Wendt (3) demonstrated in a
toluene-fed kiln that puffs can emit approx-
imately 10,000 ppm of hydrocarbons for a
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period of about 20 seconds. Depending on
the precursor chemistry, additional reac-
tions downstream of the high temperature
regions may lead to the formation of diox-
ins (8). Atmospheric transport of incinera-
tor emissions may result in wide-spread
dispersal and subsequent deposition of
these particles in various environmental
matrices (9) including soil, water, and veg-
etation (10).

Dioxin and dioxinlike compounds con-
stitute a diverse and important group of con-
taminants widely spread in the environment,
where they persist as complex mixtures
(7,11,12). One particular compound,
2,3,7,8-tetrachlorodibenzo-p-dioxin
(TCDD), has been the subject of consider-
able concern with regard to incinerator emis-
sions. TCDD and related halogenated aro-
matic hydrocarbons, including 2,3,7,8-tetra-
chlorodibenzofuran (TCDF), produce a
wide variety of species- and tissue-specific
toxic and biological effects, such as teratoge-
nesis, immunotoxicity, hepatotoxicity, tumor

promotion, and induction of numerous
enzymes, including microsomal cytochrome
P4501A1 (CYP1Al) (7,13).

Many hazardous waste sites contain chlo-
rinated solvents, including trichloroethylene
(TCE). For example, the McClellan Air
Force Base in Sacramento (California) con-
tains soil that is heavily contaminated by
TCE; it was used as a cleaning agent on air-
craft. Earlier experiments by Blankenship et
al. (14) found that extracts from soot
aerosols formed during the combustion of
TCE exhibited a dioxinlike response when
subjected to a keratinocyte bioassay. These
experiments showed that all of the hazardous
material was associated with the aerosol and
that little was found in the gas phase of the
flames. Chemical analyses of the soot extracts
indicated that, at picomole levels, TCDD/
TCDF were not detected, suggesting that
chlorinated fulvalenes, among other chlori-
nated hydrocarbons, were major components
of the mixture and that these may have been
responsible for the toxic response. Because of
its environmental importance and in view of
the previous experience with toxic TCE
aerosols, TCE was chosen as the model waste
for this study.

Although conventional chemical analy-
ses of incineration by-products identify
compounds of known toxicity, they often
fail to indicate the presence of other chemi-
cals which may also pose health risks. The
purpose of the present investigation was to
verify whether materials with dioxinlike
properties were present in the chemically
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complex TCE soot mixture and its frac-
tions. Dioxinlike effects (e.g., cardiotoxicity
and yolk sac edema) have been investigated
in medaka (Oryzias latipes) embryos.
Biological potency has been demonstrated
in vitro both by measuring interference of
compounds from the mixture with estrogen
receptor using rainbow trout (Oncorhynchus
mykiss) liver cells and by monitoring the
mixture’s binding affinity to the Ah recep-
tor and further ability to convert it into its
DNA binding form.

Methods

Flame Conditions and Chemical
Analysis

Unmixed or poorly mixed combustion can
be modeled in a well-defined laboratory
experiment with a laminar diffusion flame.
Poor mixing with relatively long residence
times in an incinerator is then modeled by
increasing the flame length beyond the
point at which soot breaks through the
flame tip. The nature of the compounds
that are emitted from these flames is typical
of the material that could be found in puffs
from incinerators.

A mixture of TCE and methane (CH,)
was burned in a laminar diffusion flame.
TCE vapor was generated by passing CH
through an impinger containing liqui
TCE that was maintained at a constant
temperature. The mole fraction of TCE in
the methane was 0.51; the flow rates were
696 ml/min of CH4 and 734 ml/min of
TCE. This mixture was supplied to an
axisymmetric laminar diffusion flame burn-
er. The co-flow burner assembly consisted
of a circular Plexiglas chamber with a 67-
mm inside diameter. The round nozzle was
made of thin-walled stainless steel tubing
with a 6-mm outside diameter. Soot was
collected from the post-flame gases with a
47-mm PTFE-coated glass fiber filter in
line with a sorbent tube.

The sorbent tube was prepared by pack-
ing 100 mm lengths of Pyrex glass tubing
(12 mm O.D.) with 3.5 g of Carbotrap C.
Glass wool plugs were inserted into both
ends. The filters were Soxhlet extracted for
16 hr with 250 ml of dichloromethane
(CH,Cl,) using anhydrous sodium carbon-
ate (Na,CO;) to neutralize adsorbed acids.
CH,Cl, extracts were roto-evaporated to a
volume of 10 ml, divided into 10 aliquots,
and stored at - 20°C. Each aliquot was dry-
evaporated under a stream of nitrogen at
25°C and reconstituted in 1 ml of analytical
grade dimethylsulfoxide (DMSO) for bio-
assays.

An individual aliquot was applied to a
silica gel column and four fractions were
eluted with different solvents including

fraction 1 (nonpolar compounds) with »-
hexane, fraction 2 (primarily PAHs and
chlorinated PAHs) with #-hexane/CH,CI,
(3:2 v:v), fraction 3 (intermediate polarity)
with CH,Cl,, and fraction 4 (polar com-
pounds) with methanol. Control fractions,
prepared by Soxhlet extractions of blank
cellulose extraction thimbles, were obtained
using identical laboratory procedures.
Analyses were performed on extracts and
fractions using a VG Trio-2 mass spectrom-
eter coupled to a Hewlett Packard 5890 gas
chromatograph. Separations were performed
using a 30-m DB-17 capillary column with
helium as carrier gas. Electron ionization (70
€V) mass spectra were obtained; compounds
were quantified based upon average molar
response factors obtained for a series of
PAHs and chlorinated aromatic standards.

Embryo Toxicity Assay
Egg collection and broodstock mainte-
nance followed the procedure described by
Marty et al. (15). Medaka female brood-
stock, maintained at 25°C under a 16 hr
light:8 hr dark photoperiod stimulating
continuous egg production, were individu-
ally netted and eggs <5 hr old were careful-
ly removed from extruded clusters.
Filaments that attached adjacent eggs were
broken by gently rolling clusters between
moistened finger tips. Individual (blastula
stage) eggs were kept in continuously aerat-
ed embryo rearing medium (ERM) (16).
Embryo exposures were repeated until
the whole TCE soot extract and individual
fractions were tested. Each exposure was
conducted as a completely randomized
design (17) which consisted in pooling eggs
and distributing them (7 = 8) by stratified
random assortment to individual 20 ml
borosilicate vials (Fisher Scientific,
Pittsburgh, Pennsylvania) in each of four
replicates. Each vial contained 2 ml of solu-
tion and 18 ml of air space. A double layer
of teflon tape (Scientific Instruments,
Randallstown, Maryland) and screw-type
lid were used to hermetically seal each vial.
For each experiment, vials were coded for
blind study except for one additional ERM
replicate (known control, not included in
statistical analysis), which served as a refer-
ence for time of normal development. Due
to the hazardous nature of this complex
mixture and to the blind randomized exper-
imental design, embryos were maintained
in vials under static (non-renewal) condi-
tions for duration of embryonic develop-
ment (8 days). After exposure and rinsing in
clean ERM, embryos were transferred to
clean vials and allowed to complete their
development. Static non-renewal conditions
have been used when testing dioxin, dioxin-
like compounds, and other complex mix-
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tures (17-20). Oxygen requirements dur-
ing medaka development in a closed system
(no access to free air), are approximately 23
ml of ERM/egg (21). Since dissolved oxy-
gen in air is 25-30 times greater than in
ERM, sufficient aeration was provided
given the eggs:ERM/eggs:air ratio.

For exposure, soot whole extract (WE)
and fraction stock solutions were dissolved
in ERM (pH 7 + 0.2) using DMSO (WE)
or DMSO/fraction as vehicle solvents. All
vehicle concentrations were restricted to 500
pl/l (0.05% v/v). This concentration has
shown in pilot tests to produce no embryon-
ic toxicity. Estimated maximum concentra-
tion of incomplete combustion by-products
was 0.09 pg/pl of vehicle (i.e, 500 pl/l x
0.09 pg/pl = 45 pg/l). The range of interest
in these pilot studies was determined
between a stock solution of 500 pl carrier
(containing WE soot) in 1 liter ERM, and a
respective dilution of 1:100 (1 ml of stock in
100 ml ERM). The intermediate concentra-
tions were chosen so that there could be 5
equidistant intervals in a log scale, based on
the absolute difference (2.0) between log 45
pg/l, and log 0.45 pg/l. This conversion
resulted in intervals of 0.4 log units, which
when reconverted (antilog) to a linear scale
gave concentrations of 45, 18, 7.2, 2.7, 0.9,
and 0.45 pg/l. Controls consisted of
embryos exposed to vehicle or ERM alone.

Embryos were observed daily under a
dissecting microscope for normal and
abnormal development. Mortality and sub-
lethal endpoints including pericardial and
peritoneal edema, eye and/or subdermal
edema, hemostasis, yolk resorption, cephal-
ic and spinal deformities, and hatching suc-
cess were observed. The transparent chorion
of medaka embryonated eggs permits direct
visualization of heart beat. Cardiac activity
was monitored by averaging heart rate (in
beats per minute + SD) of at least three
embryos per vial. This monitoring was
done daily until hatching. Evaluation was
continued through the first 4-5 days after
hatching. Development, including swim (or
air) bladder inflation and swimming activi-
ty, was monitored. A hatchling was consid-
ered normal if it swam vigorously, and had
normal gross morphology and an inflated
swim bladder. Medaka hatchlings inflate
swim bladders within 24 hr (15). To con-
firm and extend observations with the dis-
secting microscope, a limited number of
normal and abnormal embryos/larvae were
fixed in 10% buffered formalin, dehydrated
in a graded ethanol series and embedded in
complete glycolmethacrylate monomer
(22). Sections (4 pm thickness) were cut
on an LKB Historange microtome, mount-
ed to glass slides, and stained with hema-
toxylin and eosin (H&E) or toluidine blue.
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Serial sectioning was performed to validate
locations within a given embryo/larva.

For statistical purposes, all embryos
that failed to hatch were considered abnor-
mal. Differences from the controls were
identified with Wilcoxon’s sign-rank test
(p<0.05), using the JMP statistical soft-
ware package (SAS Institute, Cary, North
Carolina). The additional ERM replicate
was excluded from statistical calculations.

Liver Cell Assays

Sexually immature male and female rain-
bow trout (400-600 g mean weight) from
Mt. Lassen trout farm (Red Bluff,
California) were housed in a large (4 x 1.7
X 1 m) concrete tank at the Institute of
Ecology aquaculture facility at UC-Davis.
Gonadosomatic indices (gonad weight/
body weight X 100) ranged between 0.25
and 0.75%. Fish were held under natural
photoperiod in constant flow (Lake
Berryessa, California) water at temperatures
between 14 and 15°C and fed Silver Cup
trout pellets at approximately 1% body
weight/day. Fish were acclimated to the
above holding conditions at least 2 weeks
before experimentation.

Medium 199, L-glutamine, anti-
biotic—antimycotic solution, buffer salts,
anti-rabbit IgG alkaline phosphatase conju-
gated antibodies, p-nitrophenyl phosphate
(PNPP), pyruvate, NADH, and NADPH
were purchased from Sigma (St. Louis,
Missouri). 17B-Estradiol was purchased from
Steraloids (Wilton, New Hampshire). Anti-
mouse IgG horseradish peroxidase-conjugat-
ed antibody was purchased from Amersham
(Arlington Heights, Illinois). Tween 20,
enzyme immunoassay grade nonfat dry milk,
and 3,3°,5,5 -tetramethylbenzidine (TMB)
solution were purchased from Bio-Rad
(Burlingame, California). Diethanolamine
was purchased from Aldrich (Milwaukee,
Wisconsin), collagenase (269 U/mg) from
Worthington Biochemicals (Newark, New
Jersey), and 7-ethoxyresorufin and resorufin
from Molecular Probes (Eugene, Oregon).
All other chemicals were of analytical grade.

Cells were isolated following a two-step
perfusion technique (23) with the follow-
ing modifications: no heparin was injected
into the animals and the perfusion medium
was a calcium-free HEPES buffered Hank’s
salt solution, pH 7.6 (24). Following liver
digestion and tissue disassociation, cells
were washed two times and resuspended in
medium 199 (see below). Viability was
assessed by phase microscopy and trypan
blue dye exclusion. Typically 90% or more
of the cells were viable.

Cell cultures followed procedures of
Pesonen and Andersson (25) with one
exception: HEPES buffered medium 199 at
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pH 7.6 contained no additional Na,HPO,
because high concentrations caused precipi-
tation and interfered with the ELISA assays.
Cells were plated on 60- or 100-mm diame-
ter Falcon polystyrene tissue culture dishes
(Beckton Dickinson, Oxnard, California) at
a concentration of approximately 1.65 X 10°
cells/cm? and placed in a humidified Ambi-
Hi-Low incubator (Baxter, McGaw Park,
Ilinois) at 15°C in air atmosphere.

Cells were allowed to attach to tissue
culture dishes and acclimate to culture con-
ditions for 24 hr before the first media
change and dosing. Cells were then treated
with fresh medium 199 containing either
DMSO alone (control), WE (0.6-25 pg/l),
or each of the fractions (in DMSO). Due
to the use of 4 fractions and testing of each
with cells from a single trout, a single con-
centration (11.25 pg/l) was used. The total
concentration of DMSO in the media was
maintained at 0.05% (v/v) as described
above. Simultaneously, 1 pM 17B-estradiol

or an equivalent volume of ethanol (carrier
control) was added to the medium. Cells
from control and treatment groups were
always obtained from the same fish.

After 48 hr of exposure, cells were gen-
tly scraped off the dishes with a teflon rod
and placed in individual centrifuge tubes.
Tubes were centrifuged at 150g for 2 min
at 4°C to separate media from cells.
Resultant cell pellet was resuspended in 1
ml of 0.1 M phosphate buffer, pH 7.5
(80mM Na,HPO,, 20 mM NaH,PO))
with 20% glycerol and sonicated for 5 sec
on ice. Cell homogenates and media were
immediately frozen on dry ice and stored at
-80°C until assays were performed.

Determinations of vitellogenin (Vg) and
albumin (Alb) released into the cell culture
media and cellular CYP1A1 content were
estimated by indirect ELISA as described
(26,27) using monoclonal (MAD) anti-trout
Vg (MAb SD6C) (28), polyclonal rabbit
anti-trout Alb, and anti-scup CYP1A1 (MAb

Table 1. List of the major incomplete combustion by-products present in trichloroethylene whole extract

Retention

time (min)  Monoisotopic m/z Tentative identification % of TIC area?
17.17 248 CgHCl; , pentachlorobenzene 5.1
20.37 282 CgClg, hexachlorofulvene 1.0
20.75 282 CgClg, hexachlorobenzene 12.3
21.32 272 CgHCI; 0.5
21.62 296 C,H,Clg, heptachlorobicyclo- 0.5

[2.2.1]hepta-2,5-diene
21.85 310 CgH,Clg 16
22.15 296 C,H,Clg, heptachlorobicyclo- 0.7
[2.2.1]hepta-2,5-diene

23.08 342 CgHCl, 0.9
2413 306 CqClg 1.0
24.23 342 CgHCl, 1.0
24.55 330/264 C,HCI,/C,oH,Cl, 0.9
25.62 330 C,HCl, 14
25.85 322 CgH,Clg 0.6
26.20 376 CqClg 36
217.08 300/376 C,HsClg/C4Clg 12
21.23 298 CyoHsCls 2.1
21.55 300 CygHsClg 0.8
21.67 300 CygHsClg 1.0
21.90 298 CygH4Clg 0.9
28.17 298 CygH4Clg 0.6
29.58 298 CyoHsClg 0.9
30.92 334 CyoH4Clg 32
31.05 334 CoHiCle 23
32,07 332 C,gH,Clg 14
33.02 332 CygHClg 1.0
33.40 332 CyoH,Clg 16
36.23 366 C,oHCI, 5.5
37.02 366 C,oHCl, 37
43.30 400 C,Clg 5.2
45.15 390 C,,HCl, 0.8

aListed peaks account for 63% of area of total ion chromatogram (TIC), with C,gH,Cl; . compounds repre-
senting ~30%. The remaining area is distributed among at least 200 smaller peaks.
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1-12-3). Dilutions of media or cell extracts
(10-100-fold) in phosphate buffered saline,
pH 7.5 (PBS: 80mM Na,HPO,, 20 mM
NaH,PO,, 100 mM NaCl) were used.

Ethoxyresorufin O-deethylase (EROD)
activity of whole cell homogenates followed
method of Butke et al. (29) adapted for
microplate format (Cambridge microtiter
plate fluorometer, model 7620). Briefly,
fluorescence (excitation 530 nm and emis-
sion 585 nm) in 80-100 pg of whole cell
homogenates, incubated in 100 mM potas-
sium phosphate buffer, pH 8.0 (90 mM
K,HPOy, 10 mM KH,PO,, 0.25 pM
ethoxyresorufin, and 0.5 mM NADPH) to
a final reaction volume of 0.2 ml, were
recorded at 3040 sec intervals over 5 min
at 24°C. Determinations of cellular lactic
dehydrogenase (LDH) activity were made
following the method of Bergmeyer and
Berndt (30). Protein concentrations of cell
homogenates were determined using the
Bio-Rad DC protein assay kit, with bovine
serum albumin (BSA) as the standard.

Each exposure group of liver cells con-
sisted of three to four dishes per treatment,
with duplicate determinations per dish.
Significant differences between means of
various treatment groups were determined

(B) (C)

by ANOVA (p<0.05) and means were con-
trasted using Dunnett with control group
and Tukey-Kramer methods. All statistical

analyses were performed using the JMP
procedure of SAS software (SAS Institute).

Gel Retardation/DNA Binding Assay

Based on the ability of Ah receptor (AhR)
ligands to convert this receptor to its DNA
binding form, a gel retardation assay was
used to measure the amount of inducible
protein [32P]DNA-complex. This provided
an indirect way to detect dioxinlike chemi-
cal(s). Guinea pig hepatic cytosol was used
as the source for the receptor, based on pre-
vious determinations which indicated that
this species is the most optimal for the trans-
formation and DNA binding analyses of lig-
and:AhR complexes (31).

In the assay, hepatic cytosol prepared
from male Hartley guinea pigs (250-300 g;
Michigan Department of Public Health,
Lansing, MI), was suspended in ice-cold
HEDG buffer (25 mM HEPES, pH 7.5, 1
mM EDTA, 1 mM dithiothreitol, 10%
(v/v) glycerol) and aliquots were stored at
-80°C as previously described (32,33).
Protein concentrations were measured by

the method of Bradford (34) using BSA as
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Figure 1. Total ion chromatogram of trichloroethylene soot whole extract. More than 250 incomplete com-
bustion by-products were formed during pyrolysis. (A) Hexachlorofulvene, (B) pentachlorobenzene, (C)
hexachlorobenzene, (D) octachlorostyrene, (E) octachlorofulvalene.
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the standard. For gel retardation analysis,
125 pl cytosol (16 mg of protein/ml) was
incubated with DMSO (20 pl/ml), 15 nM
TCDD in DMSO or an aliquot (2.5 pl) of
the soot WE or fractions (in DMSO) for 2
hr at 20°C. Gel retardation analzysis of the
samples was carried out using [32P]-labeled
dioxin-responsive element (DRE)-contain-
ing DNA oligonucleotide as described by
Helferich and Denison (33) and the result-
ing protein-DNA complexes were detected
following autoradiography of dried gels.
Quantitation of the inducible protein-DNA
complex was carried out as described by
Denison and Yao (32). The 2,3,7,8-tetra-
chlorodibenzo-p-dioxin (TCDD) was
obtained from S. Safe (Texas A&M
University) and [y-32P] ATP (6,000
Ci/mmol) from New England Nuclear.
Molecular biological reagents were obtained
from New England Biolabs.

Results
Analytical Chemistry

Combustion of the TCE/CH mixture pro-
duced a flame characterized by heavy soot
production, approximately 100 mg/g of fuel
burned. CH,Cl, extracts of the soot had a
dark blue color, which may be attributed to
the presence of significant amounts of chlo-
rinated fulvalenes (C,,H,Cl, , depending
on number of H and Cl substitutions, or
C,,Clg = octachlorofulvalene), structural
isomers of naphthalenes (14). C,(H Clg
compounds represented ~30% of the total
ion chromatogram (Table 1). GC/MS
analysis of the WE indicated that over 250
organics (Fig. 1) were formed during TCE
pyrolysis. Nearly all were chlorinated mono-
and polyunsaturated aliphatics, cyclic poly-
enes 1-, 2-, and 3-ring aromatics, phenols,
fulvenes (structural isomers of benzene), and
the above mentioned fulvalenes. With a
limit of detection of about 1 pM in the
extract, no polychlorinated biphenyls
(2,3,7,8-TCDD or TCDF) were detected.
Embryo Toxicity Assay

The combined percentage of normal devel-
opment for all controls was above 90 (Table
2). Greatest toxicity was seen after exposure
to WE (Table 2 and Fig. 2). Based on the
nominal concentrations previously estimat-
ed, the observed WE concentration in which
50% of larvae (ECSO) showed signs of abnor-
mality was 7.2 pg/l, while at 2.7 pg/l, no
effect was observed. The calculated ECs, was
~4.3 pg/l (y = -51.64 log x + 136.75, r2 =
0.92). The two higher WE concentrations
proved lethal to most embryos. The few
embryos that hatched were extremely weak
and did not inflate swim bladders. Statistical
analyses (Wilcoxon’s sign-rank test) showed
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significant differences at and above 7.2 pg/l.
The toxicity trend observed after exposure to
the individual fractions indicated that frac-
tions 3 and 1 were the most toxic, while frac-
tions 2 and 4 had no significant effects.
However, none of the toxic fractions were as
toxic as WE. For fraction 1, approximately
40% of embryos exposed to 45 pg/l devel-
oped abnormally, while lower concentrations
showed variable effects (Tables 2 and 3; Fig.
2). Results with fractions 2 and 4 were simi-
lar: no more than 29% of the exposed
embryos developed abnormally regardless of
concentration (Table 2). Fraction 3 was
slightly more toxic than WE over the range
of 0.45-2.7 pg/l, and became less toxic at
higher concentrations (approximately 65%
and 50% of embryos exposed to 18 and 45
ng/l were abnormal) (Tables 2 and 3; Fig. 2).

The predominant embryonic defect was
edema, pronounced in pericardial cavity but
also present in the peritoneal cavity and yolk
sac (Table 3 and Fig. 3). Embryonic mortal-
ity was rarely seen. Within the first 6 days of
exposure, 13 (1%) out of a combined total
of 1280 embryos died. Of these, only 6 (4
deaths in 48 hr or less and 2 delayed hatch-
ings) were observed in controls. During
these first 6 days, no symptoms of cardiovas-
cular toxicity (i.e., bradycardia or tachycar-
dia) that would indicate formation of edema
were apparent (data not shown). Two to
four days later, depending on concentration,
mild pericardial edema appeared and pro-
gressed rapidly, often leading to death before
hatching (Fig. 3). In these severely affected
embryos, the process of heart chamber for-
mation observed as a shunt of blood from
left to right was apparently terminated, and
a pulsatile single tube had appeared in indi-
vidual fish who had earlier shown evidence
of more developed heart formation. Other
lesions included hemostasis, a severe darken-
ing over brain, and larger than normal yolk
sac. Cephalic/spinal abnormalities were rare
(<0.5%). The highest concentration of WE
compatible with control hatch frequency
was 7.2 pg/l. Fifty percent of hatchlings
exposed to this concentration showed nor-
mal structure and were able to inflate swim
bladders and move about. The remainder
could not inflate swim bladders; edemas
became more severe, often extending from
pericardial and peritoneal/yolk sac areas to
the eyes (Fig. 4). Finally, these hatchlings
could not swim or maintain equilibrium.

In embryos showing no evidence of
gross alterations, light microscopy revealed
additional lesions. The lower concentrations
of WE (0.45 and 0.90 pg/l) caused no
apparent lesions, but 2.7 pg/l was associated
with mild hepatocyte glycogen depletion in
liver hepatocytes. At concentrations of 7.2
pg/l and above, changes of greater magni-
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Figure 2. Effect of incomplete combustion by-products from trichloroethylene soot whole extract (bars)
and fractions 1 and 3 on the development of medaka after static non-renewal exposures at embryonic
stages. Each point represents the mean of four replicates + SE, eight embryos per replica. In fraction 1
(0.45 pg/l), one replicate was lost due to bacterial infection. Significant (p<0.05, Wilcoxon’s sign-rank test)
abnormalities compared to controls were seen at concentrations 7.2 ug/l for whole extract (*), 45 pg/| for

F1(+), and >18 pg/l for F3 (#).

Table 2. Percentage of normal larval development (4-5 days after hatch) of medaka exposed to
trichloroethylene soot whole extract (WE) and its fractions (1-4)2

Concentration

lug/ WE F1 F2 F3 F4

0 Control® 90.6 + 3.1 96.9 + 3.1 875+5.1 925+56 875+172
0 Solvent¢ 938+35 93836 87.5+5.1 84.4+6.0 938+6.3
0.45 90.6 +6.0 95.8 +3.6 78.1+6.0 75072 719+11.8
0.90 87.5+5.1 875172 81.3+8.1 65679 875+17.2
2.1 71.9+6.0 75010 71.9+6.0 68.8 + 10.8 906 +6.0
1.2 50.0 + 9.0* 93836 78.1+6.0 81.3+8.1 875+5.1
18.0 0* 844+79 844+179 34.4+17.9* 844+79
45.0 0* 59.4 + 9.4* 71.9+6.0 50.0 + 5.1* 71.9+129

#Values represent the mean of 4 replicates + SE; number of embryos per replica = 8. One replicate from F1
(0.45 pg/l) was lost due to possible bacterial infection. Static non-renewal exposures on embryos ~10 hr
old (blastula stage), until 8 days (after completion of organogenesis).

bControl was embryo rearing medium (ERM).

°ERM-DMSO or ERM-eluting solvent in DMSO (0.05% v/v).
*Statistically significant (p <0.05), Wilcoxon’s sign-rank, compared to respective controls.

tude were seen in both liver and heart. Since
7.2 pg/l was the experimental ECy, analysis
was divided into two groups, depending on
the presence or absence of pericardial
edema. Moderate glycogen depletion char-
acterized livers of embryos which showed no
edema, suggesting that the former was the
more sensitive morphologic indicator of
exposure. Although heart, kidney, and gut
were examined, no other significant alter-
ations were seen. More advanced structural
alterations of the liver accompanied pericar-
dial edema. These included severe glycogen
depletion, mild lipidosis, and occasional
enlarged hepatocytes. In embryos which
developed pericardial edema but showed no

regression to tubular heart, walls of sinus
venosus and atrium were edematous. This
localized cardiac edema was characterized by
a subendothelial accumulation of fluid in
the sinus venosus, dilated sinoatrial com-
partment, and apparent enlargement of sev-
eral endothelial cell nuclei. Ventricle and
bulbus arteriosus were apparently not affect-
ed. Since death followed when concentra-
tions >7.2 pg/l were used, histological alter-
ations are not presented for those fish.

Liver Cells Assays

At concentrations between 0.05 and 1.2
pg/l and in the absence of 17B-estradiol in
the culture media, WE induced EROD

Volume 104, Number 7, July 1996 « Environmental Health Perspectives



Articles ¢ Toxicity of trichloroethylene soot

Table 3. Percent (%) of medaka embryos/larvae with selected abnormalities after continuous exposure to
trichloroethylene soot whole extract (WE) and fractions 1 and 3 (F1, F3)

Pericardial/other Abnormal Death resulting Delayed/
Concentration (ug/l) edema larval activity from edema incomplete hatch
WE
Control® 0 0 0 3
Solvent? 3 3 3 3
0.45 6 0 6 3
0.90 0 9 0 3
2.70 0 18 0 0
7.20 50 44 50 0
18.0 100 6¢ 88 6
45.0 100 3¢ 88 9
F1
Control® 0 3 0 0
Solvent? 0 3 0 0
0.45 3 0 3 0
0.90 0 9 0 3
2.70 1} 12 0 0
1.20 0 3 0 0
18.0 3 9 0 3
45.0 12 34 9 0
F3
Control? 0 6 0 0
Solvent? 0 9 0 3
0.45 0 25 0 0
0.90 3 28 3 0
2.70 9 22 0 0
7.20 0 19 0 0
18.0 9 38 6 0
45.0 6 22 6 3

2Control was embryo rearing medium (ERM).

bERM-DMSO0 or ERM-eluting solvent in DMSO (0.05% v/v). Values represent mean of nearest whole num-
ber from four replicates, except for 0.45 pg/! of F1 (loss of 1 replicate).

°Edemas produced the bulk of late embryonic mortality.

Figure 3. Normal (A) and abnormal (B) late-stage (216 hr) medaka embryos after control and trichloroethyl-
ene whole extract treatments. Note how pericardial edema (small arrows) results in separation of embryo
proper from yolk sac. E, Eye; H, heart; 0, oil droplet; YS, yolk sac. Bar = 100 pm.

activity. This induction was maximal at 0.6
pg/l. CYP1A1 protein synthesis was signifi-
cantly increased at the three higher concen-
trations (Fig. 5). More WE was required to
cause a detectable rise in CYP1Al protein
than for a rise in EROD activity. Only
fraction 1 showed a significant increase in
CYP1A1 protein level and EROD activity
(29 and 45%, respectively).

All concentrations from 0.6 to 25 pg/l of
WE depressed trout liver cell response to

17B-estradiol relative to the 17B-estradiol-
only positive control. Inversely, CYP1Al
protein was induced in a concentration
dependent manner with increasing concen-
trations of extract, with CYP1A1 protein
synthesis maximal at 25 pg/l (Fig. 6).
However, EROD activity at all concentra-
tions tested was not significantly different
from carrier or positive (17B-estradiol-only)
controls (data not shown). Mean CYP1Al
protein level was higher, but not significant-
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Figure 4. Normal (A), and abnormal (B-D) medaka
larvae after control and trichloroethylene whole
extract treatments. Note in B and C pericardial
(PE), peritoneal/visceral (VE), and eye (EE) edema
in larvae that managed to inflate swim bladder
(SB) and all of the above plus no swim bladder
inflation in D. H, Heart; O, oil droplet; YS, yolk sac.
Severe edema preceded death. Bar = 1 mm.

ly, at the 3.95 pg/l WE in the absence of
17B-estradiol (Fig. 6). Significant depression
of albumin synthesis (20-30%) was seen
only at the higher concentrations (3.95-25
pg/l) of WE. However, the viability of cells
exposed to all concentrations of WE was
confirmed by phase contrast microscopy,
cellular protein, and cellular LDH activity
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per dish. Typically, of the 322 x 10° + 73 x
10° (mean + SD) liver cells harvested per
fish, 90% or more were viable. Soot frac-
tions 1-4 were tested for effects on vitel-
logenin synthesis as above; only fraction 1
depressed mean vitellogenesis (30%).

DNA Binding

Gel retardation analysis of guinea pig
hepatic cytosol which had been incubated
with WE or soot fractions resulted in the
formation of a soot-inducible protein-32P-
DNA complex (compared to the control
solvent fractions) that migrated to the same
position as that of the TCDD-inducible
complex (Fig. 7). We have previously
shown (32) that the TCDD-inducible pro-
tein-DNA complex in this position repre-
sents the high affinity binding of trans-
formed TCDD-(AhR) complex to double-
stranded 32P-labeled DRE. Results indicate
that not only does WE ¢ontain a chemi-
cal(s) which exhibits dioxinlike activity
(i.e., it binds to AhR activating its transfor-
mation and DNA binding), but that each
of the fractions tested positive in this assay.

Discussion

Transient emissions of soot and toxic
volatile organic hydrocarbons or “puffs”
(4-6) were modeled in a well-defined labo-
ratory experiment with a laminar diffusion
flame. A very complex mixture of halo-
genated and nonhalogenated aromatic
hydrocarbons was found in association
with the aerosol that escaped the flame in
the same manner that transient puffs
escape the oxidation zone of an incinerator.
Although the total amounts of these emis-
sions may be small in practice, the present
analysis has revealed that their potential
toxicity may be significant.

While dioxins and furans are among the
compounds of greatest concern that can be
found in the effluent of hazardous waste
incinerators, and while significant amounts
may be released to the environment in this
way (35), attention should not be exclusive-
ly directed toward these compounds. Harris
et al. (19,20) found that certain PCB con-
geners and dioxin, extracted from Lake
Ontario rainbow trout skeletal muscle, were
toxic to medaka embryos. These com-
pounds are present in Great Lakes biota at
concentrations ranging from parts per tril-
lion to parts per billion. It has been pro-
posed that these non-ortho-substituted
PCBs may contribute more to the overall
toxicity than dioxins, which are present at
lower orders of magnitude.

Nearly all chemical species in the mix-
ture studied herein were heavily chlorinat-
ed (4-, 5-, 6-Cl) and sometimes perchlori-
nated. They included benzenes, styrenes,
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Figure 5. Soot whole extract (WE) induces
ethoxyresorufin 0-deethylase (EROD) activity and
CYP1AT1 protein in rainbow trout liver cells. Error
bars = standard deviation. Means with the same
letter are not significantly different (p<0.05,
ANOVA). Number of dishes per treatment = 34,
with duplicate determinations per dish.

fulvenes, butadienes, fulvalenes, cyclopen-
tadienes, naphthalenes, acenaphthylenes,
and phenols. Although many compounds
still remain unidentified, it is very likely
that these as yet unidentified organics were
configurational isomers of the main com-
pounds just mentioned, given the possible
mathematical combinations of chlorine
substitutions across the many double
bonds. Despite the absence of 2,3,7,8-
TCDD and -TCDF, it is conceivable that
other chlorinated dioxins, dibenzofurans,
and related chemicals were present.
Results of this study confirm and
extend previous work showing the presence
of dioxinlike compounds (74) in this com-
plex soot mixture and demonstrate that the
WE and fractions 3 and 1 (products of
mixed polarity and no polarity, respective-
ly) caused toxicity and exhibited biological
activity. The major developmental toxicity
endpoint of this study was edema of peri-
cardial cavity with extension to peritoneal
cavity and yolk sac. Severe pericardial
edema was accompanied by an uncoiling of
the fused endocardial tube. This defect
resulted in a reversal of initial chamber for-
mation to that of a single, pulsatile tube.
The latter, normally seen at an earlier stage
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Figure 6. Effect of various concentrations of
whole extract (WE) on vitellogenin and CYP1A1
protein levels in rainbow trout liver cells simulta-
neously exposed to 1 pM 17B-estradiol or carrier
control. Error bars = standard deviation.
Significant (p<0.05, ANOVA) depression of vitel-
logenin (all concentrations) and increase in
CYP1A1 protein (all concentrations), indicated by
asterisks, is relative to 17B-estradiol-only control.
Number of dishes per treatment = 34, with dupli-
cate determinations per dish.

of development, was also accompanied by
apparent rupture of the posterior pericar-
dial membrane with release of fluid into
peritoneal cavity. These changes resembled
those reported after exposure to dioxin or
dioxinlike compounds (12,38-41) by late
embryo and larval stages of rainbow (36)
and lake trout (37), medaka (18), chick,
fish-eating birds (terns, herons, double
crested cormorants, and herring gulls), and
rodents. Furthermore, the generation of
toxicity in medaka embryos exposed to
TCE soot resembled that of TCDD, where
early development proceeded normally and
was followed by a gradual progression of
cardiotoxicity.

Histopathological studies have suggested
that edema of endothelial cells and myocar-
dial interstitium was an important early
stage in cardiotoxicity (37). Interestingly,
juvenile yellow perch (Perca flavescens),
respond more aggressively with myocyte
necrosis, hypertrophy, and hyperplasia of
pericardial mesothelium as well as fibrinous

Volume 104, Number 7, July 1996  Environmental Health Perspectives



Articles * Toxicity of trichloroethylene soot

— o~ ™ -

< c c c

- O =] =} =}

g 8 ® 8 ®
gu_.—\_thh—v
5 s 535358 8
o o @« 3 8 B & B LB 8
2 g © © £ © € © € 8 £ ©
= o =2 £ 6 ® 6 & & & &5 ®
a8 r 8 28 &S & 8 & S &

Figure 7. Soot and soot fractions stimulate arylhy-
drocarbon receptor (AhR) transformation and
DNA binding. Guinea pig cytosol, incubated in the
presence of 15 nM TCDD, whole extract, various
control solvents or soot solvent fractions, was
mixed with 32P-labeled DRE oligonucleotide and
specific protein—-DNA complexes resolved by gel
retardation as described in Methods. The arrow
indicates the position of the inducible AhR:DNA
complex. The following are densitometry readings
(%) of the chemically induced bound complexes
relative to that obtained with TCDD. Control read-
ings were subtracted as background. TCDD
(100%); whole extract (55%), F1(69%), F2 (52%), F3
(62%), F4 (34%).

pericarditis (42). Although our initial histo-
logic analyses have not revealed altered
endothelial morphology, it is possible that
fluid loss occurred through this tissue into
pericardial and peritoneal cavities. The
occurrence of edema in mammals, birds,
and fish by TCDD and related compounds
(37) suggests a common mechanism related
to endothelial dysfunction (43). Immuno-
histochemical studies have localized
CYP1ALl to endothelium of heart in scup
(Stenotomus chrysops) (44) and salmonids,
and embryonic induction occurs commonly
in endothelial cells (45). It is possible that
CYP1A induction (mediated through AhR
activation) in our study could have led to
oxidative injury and loss of endothelial
integrity. Octachlorofulvalene appears to be
a potent inhibitor and substrate of certain
glutathione S-transferases (GSTs) (46), as
are many extensively chlorinated com-
pounds. Perhaps some embryo toxicity may
be related to changes in cellular redox status
resulting from depletion of reduced glu-
tathione or GST inactivation.

Embryonic chick edema after TCDD
or toxic PCB congener exposure suggested
that increased prostaglandin synthesis, as a
sequel to AhR activation, could mediate
CYP1A induction and cardiotoxicity. Such
a relationship was suggested by the ability
of benoxaprofen, an anti-inflammatory
drug, to reduce toxicity in 3,4,3’,4 -tetra-
chlorobyphenyl-treated embryos without

affecting CYP1A induction, supporting a
role for arachidonic acid metabolites
(prostaglandins, leukotrienes, etc.) as medi-
ators in toxicity, rather than induction
itself (38). Wisk and Cooper (47) exposed
medaka embryos to dioxin (210 ng/l) or
beta-naphthoflavone (BNF; 50 pg/l) and
found increased activity of benzo(4)pyrene
hydroxylase. Induction of these CYP1A-
associated enzymes over a period of days
suggests that embryos have an intact AhR-
mediated activation pathway. However,
while benzo(a)pyrene hydroxylase induc-
tion, hemorrhage, and edema were seen in
some medaka after dioxin treatment, others
showed similar induction but no vascular
changes at nontoxic levels of BNF. This
suggests that CYP1A induction is not a
prerequisite of cardiotoxicity. Nevertheless,
the importance of AhR mediated events in
embryonic cardiovascular toxicity needs
further study.

While we are not aware of these types of
studies in fish, investigations in other animal
models have shown interaction between the
CYP1A-AhR system and other CYP iso-
forms. These linkages involve metabolic
alterations of endogenous substrates through
biochemical pathways, which include
antioxidant enzymes, metallothioneins, heat
shock proteins, steroid receptors, oncogenes,
tumor suppresor genes, glutathione, and
GSTs (45). Possible involvement of rodent
CYP1B1 in edematous lesions and overall
dioxinlike toxicity, depending on tissue-
specificities, is being investigated. Although
highly inducible by TCDD/PAHs (via
AhR) and involved in PAH metabolism
(48), the presence of CYP1BI in fish
remains to be demonstrated.

Edematous spaces, devoid of cells, were
observed in heart, peritoneum, and skin of
medaka embryos, a condition similar to
that of chickens exposed to TCDD and
toxic PCBs (38,39). We cannot state
whether the developing medaka has white
blood cells capable of emigration into
extravascular spaces, and we cannot rule
out a compound-induced cytopenia. Other
possible mechanisms underlying edema
continue to be investigated. /n situ nuclear
magnetic resonance analyses from our labo-
ratory suggest that transient depression of
certain energy phosphate metabolite levels
(mainly ATP) may lead to deficient ion
translocation and consequent edema
(Villalobos, in preparation). We are also
focusing attention on the relative abun-
dance of basement membrane components
in control versus treated medaka embryos.

While WE adversely affected normal
development in a concentration dependent
manner, various concentrations of fractions
3 or 1 did not exhibit such a relationship.
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This finding may be related to solubility
but has persisted over repeated assays.
Perhaps combustion by-products of non-
polar and/or intermediate polarity act syn-
ergistically in the WE to produce effects
whose impact was not apparent when a sin-
gle fraction was assayed. However, syner-
gism has not been specifically tested.
Moreover, direct comparisons of the toxici-
ty of combined fractions with WE are
complicated by losses of volatile com-
pounds or the reactivity of constituents like
the chlorinated fulvenes and fulvalenes.
Thus, evaluation of the toxicity of individ-
ual fractions should be viewed as a qualita-
tive guide indicative of the polarity of the
most toxic components of WE.

In vitro observations revealed no direct
cellular toxicity but vitellogenin in medium
was reduced. Fish liver cells are sensitive
indicators of exposure to aquatic pollutants
that have dioxinlike activity (49-52).
Hepatocytes and biliary epithelial, and
endothelial cells contain the readily
inducible enzyme CYP1A1 (45). The liver
plays a key role in reproduction in fish,
being a component of the hypothalamic,
pituitary, gonadal, and liver reproductive
axis (53). In these oviparous vertebrates,
the egg yolk precursor protein vitellogenin
is synthesized in the liver and transported
by the circulatory system to the developing
oocytes. Vitellogenesis is under direct con-
trol of estrogens (54 ), and since CYP1Al-
inducing compounds such as dioxin are
known antiestrogens in mammals (55), the
possibility exists that vitellogenesis and
gonadal maturation could be disrupted in
exposed fish.

At the concentrations tested, WE was
not overtly toxic to liver cells but induced
dioxinlike effects. EROD activity and the
amount of CYP1ALl protein increased in a
concentration-dependent manner, con-
firming the dioxinlike activity of compo-
nent(s) of the extract. The EROD activity
assay proved more sensitive in detecting
significant changes in CYP1Al expression
at low WE concentrations than the
CYP1A1 ELISA assay. 17B-Estradiol may
have had an inhibitory or antagonistic
effect upon EROD and CYP1Al protein
induction in cultured liver cells, as has been
previously demonstrated in vivo with femi-
nized brook trout (56) and in mouse fetal
cell cultures (57). Higher concentrations
of WE significantly increased CYP1Al
protein, but EROD activity remained
unchanged. At concentrations above 0.6
pg/l, components of the WE may have
competitively inhibited binding of
ethoxyresorufin to CYP1A1. Substrate
inhibition by PCBs in fish liver cell EROD
assays has been demonstrated i vivo and in
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vitro (58,59). These effects underscore the
importance of conducting direct measure-
ments of enzyme concentration in addition
to enzyme activity.

Trout liver cells exposed simultaneously
to noncytotoxic concentrations of 17p-
estradiol and WE showed much less vitel-
logenin in medium than did similar cells
exposed to 17B-estradiol alone. Vitellogenin
levels and CYP1A1 protein appeared to be
negatively correlated. Higher concentra-
tions (3.95-25 pg/l) of the extract may
affect the secretory capacity of liver cells;
however, even at the 0.6 pg/l concentration
(where albumin synthesis was not
depressed) vitellogenin production was still
compromised. From the fractions, only
fraction 1 showed an effect on CYP1Al
protein or EROD activity (both increased),
or vitellogenin (reduced). CYP1A1 induc-
ing compounds may suppress vitellogenin
production in fish liver cells by an antiestro-
genic mechanism mediated through the
AhR, similar to that described in mammals
(60). We investigated whether this mecha-
nism might apply to teleost liver, since AhR
has been identified in this organ (45).

Numerous studies have revealed that
most of the critical and sensitive toxic and
biological responses to TCDD and related
compounds are mediated by its soluble
AhR, to which these chemicals bind with
high affinity (7, 13,61). After ligand binding,
the halogenated aromatic hydrocarbon:AhR
complex undergoes transformation into its
DNA binding form and translocates into
the nucleus (62,63). The transformed com-
plex associates with a specific DNA
sequence, the dioxin responsive element
(DRE), resulting in transcriptional activa-
tion of adjacent responsive genes (63-66).
Since previous studies have demonstrated a
high correlation between binding of a chem-
ical to the AhR and its degree of toxicity, the
relative biological/toxicological potency of
complex mixtures of chemicals can be esti-
mated by measuring the ability of an
unknown chemical/mixture to activate the
AhR or an AhR-dependent response
(61,67). Previously, we have utilized a gel
retardation DNA binding assay to demon-
strate that transformed TCDD:AhR com-
plexes, formed in vitro, can bind to a DRE
oligonucleotide specifically and with high
affinity, mimicking that which occurs in
vivo (32,65,66). Since there appears to be
an excellent correlation between the ability
of a given chemical to stimulate AhR trans-
formation/DNA binding and its ability to
activate gene expression, this technique has
been utilized as a sensitive bioassay for the
detection of dioxinlike chemicals (33).

The gel retardation assay results indi-
cated that WE contains dioxinlike chemi-
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cals which not only bind to the AhR but
also induce its transformation and DNA
binding. The formation of inducible pro-
tein—-DNA complexes by each soot fraction
implies that the soot must contain numer-
ous AhR ligands. Given the correlation
between the ability of a given chemical to
stimulate AhR transformation/DNA bind- |

ing and its ability to activate gene expres- “\\

sion, our results suggest that WE and frac-
tions might also alter gene expression in
mammals. In addition, given the role of the
AhR in mediating toxicity of these chemi-
cals (7,13,61), it is very likely that some of
the toxicity produced by these compounds
was AhR-mediated. Fractions 2 and 4 were
not associated with developmental car-
diotoxicity but did bind to the AhR induc-
ing its transformation and DNA binding.
While these processes may lead to car-
diotoxicity, mediating factors are not
known and need investigation.

In summary, CH,Cl, extracts of TCE
combustion aerosol proved toxic/bioactive
using a battery of bioassays. The pattern of
toxicity was identical to that previously
reported for dioxin. Chemical analyses per-
formed herein documented the presence of
at least 250 chlorinated incomplete com-
bustion by-products in the whole soot
extract, but the obvious target compounds,
TCDD and TCDF, were not present at
detectable (picomole) levels. These results
indicate that an array of toxic effects may
arise from substances other than those tar-
geted by conventional chemical analyses.
They also suggest a need for bioassay-
directed assessments of toxicity/biological
potency in complex mixtures.
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